
Anti Hunter — Staking & Token Distribution Service
Spec (Base)
Version 0.9 • Draft for implementation • Date: 2026-02-13 • Network: Base Mainnet

Purpose

Design a production-grade staking and token distribution system for $ANTIHUNTER on Base that
enforces current tokenomics: fixed lock terms (30/60/90/120d), weighted rewards, 25% early-exit

penalty to rewards pool, optional rollover boost, and transparent accounting.

1) Goals, Constraints, and Product Principles

Goals

Reward long-term stakers with deterministic, auditable rules.

Route protocol fees + penalties back to stakers (compounding loop).
Avoid fake APY framing; rewards can be zero when vault is unfunded.

Support per-deposit maturities (no global unlock cliffs).

Non-goals (v1)

No cross-chain staking.
No leveraged staking derivatives.

No discretionary operator intervention in reward math.

2) Onchain Architecture (Recommended)

1. AntiHunterStakingV1 — lock positions, claim, early exit, rollover.
2. RewardsVaultV1 — reward inventory + cumulative reward-per-weight accounting.

3. FeeRouterV1 — routes protocol fees + penalties into rewards vault.
4. BuybackExecutorV1 (optional v1.1) — deterministic PnL→buyback logic.

Contract trust model

Use multisig admin for privileged actions.

Prefer immutable core math; if upgradeable, use timelocked UUPS + guardian pause.
Roles: DEFAULT_ADMIN_ROLE, PAUSER_ROLE, REWARD_NOTIFIER_ROLE, FEE_ROUTER_ROLE.

3) Position Model (Per-Deposit)

Each stake creates an independent position record (optionally mapped to NFT token IDs later).

struct Position {
 address owner;
 uint256 principal; // amount staked
 uint64 lockStart;
 uint32 lockDurationDays; // 30/60/90/120
 uint32 baseWeightBps; // 10000/14000/19000/25000
 uint32 rolloverBoostBps; // +2000 max, capped by total 30000
 uint64 unlockAt;
 uint256 rewardDebt; // standard accRewardPerWeight debt model
 bool closed;
}

4) Tokenomics Rules (Encoded)

Lock Term Weight Notes

30 days 1.0x (10,000 bps) Base weight

60 days 1.4x (14,000 bps) Mid-term preference

90 days 1.9x (19,000 bps) Strong conviction

120 days 2.5x (25,000 bps) Max base weight

Rollover boost: if re-lock happens within 24h of maturity, add +0.2x (2,000 bps), hard cap

effective weight at 3.0x (30,000 bps).
Early exit: allowed any time with 25% principal penalty, 100% routed to RewardsVault.

Rewards source: protocol fees in $ANTIHUNTER + penalties + optional treasury allocations.
No guaranteed APY: UI should display realized + projected ranges, never fixed promises.

5) Reward Accounting Design

Use standard cumulative accounting to avoid O(n) loops:

accRewardPerWeight (scaled 1e18)
positionPending = (positionEffectiveWeight * accRewardPerWeight / 1e18) - rewardDebt

On stake/rollover/exit/claim: settle pending rewards first.
On rewards notification: increase accRewardPerWeight proportionally to active total weight.

If no active weight, rewards remain in vault until next distribution update.

6) Core Function Surface (v1)

// staking
stake(uint256 amount, uint32 lockDurationDays)
rollover(uint256 positionId, uint32 newLockDurationDays)
claim(uint256 positionId)
claimAll(uint256[] positionIds)
exitEarly(uint256 positionId) // principal - 25% penalty
withdrawMatured(uint256 positionId)

// views
pendingRewards(uint256 positionId) view returns (uint256)
positionInfo(uint256 positionId) view returns (Position)
totalEffectiveWeight() view returns (uint256)

// vault/admin
notifyReward(uint256 amount)
routePenalty(uint256 amount)
pause() / unpause()

7) Event Schema (Must-Have for Indexing)

event Staked(address indexed user, uint256 indexed positionId, uint256 amount, uint32 lockD
event Rollover(address indexed user, uint256 indexed oldPositionId, uint256 indexed newPosi
event Claimed(address indexed user, uint256 indexed positionId, uint256 amount);
event EarlyExit(address indexed user, uint256 indexed positionId, uint256 principalReturned
event MatureWithdraw(address indexed user, uint256 indexed positionId, uint256 principal);
event RewardNotified(uint256 amount, uint256 newAccRewardPerWeight);
event PenaltyRouted(uint256 amount);
event Paused(address by);
event Unpaused(address by);

8) Security Controls & Invariants

Controls

ReentrancyGuard on all mutating payout paths.

Pausable for emergency freeze.
Explicit token allowlist (only $ANTIHUNTER for v1).

No external callback hooks in reward flow.

Invariants (for property tests)

Principal conservation: total staked + withdrawn + penalized equals deposits (mod rounding).
No user can claim > funded rewards allocated to weight.

Penalty always equals exactly 25% of principal on early exit.

Effective weight never exceeds 30,000 bps cap.
Position cannot be withdrawn twice.

9) Offchain System (Do Not Overbuild)

Indexer: Goldsky/Subgraph for positions, APR views, realized rewards, TVL by term.

RPC/Node: Alchemy Base endpoints.
Automation: OpenZeppelin Defender relayers for reward notifications and scheduled ops.

Alerts: failed tx spikes, pause events, vault underfunding, abnormal early exits.

10) API + Frontend Requirements

Read API

GET /positions/:address
GET /positions/:id
GET /rewards/pending/:address
GET /metrics (TVL, term split, daily claims, penalty inflow)
GET /health (vault liquidity, notifier status)

UI copy guardrails

No “guaranteed APY” language.

Show lock term, weight, penalties, and reward source transparently.
Require explicit confirmation on early exit penalty.

11) Launch Plan

Phase 0 — Spec freeze (2–4 days)

Finalize state, math, events, and admin model.

Phase 1 — Build + test (1–2 weeks)

Solidity implementation (Foundry).
Unit + fuzz + invariant tests.

Base Sepolia integration tests.

Phase 2 — Security hardening (1–2 weeks)

External audit / competitive review.
Fixes + retests.

Deploy scripts + runbook freeze.

Phase 3 — Mainnet guarded launch

Initial stake cap + staged enablement.

24–72h monitoring period before cap expansion.

12) Open Decisions (Need Product Call)

1. Single reward token forever vs future multi-reward extension?
2. Should matured positions auto-roll by default (opt-in) or always manual?

3. Upgradeability preference: immutable core vs timelocked upgrades?
4. Do we expose position NFTs publicly in v1 or keep internal IDs?

13) Recommended Default Decisions

Single reward token in v1 ($ANTIHUNTER only).

Manual rollover with explicit +0.2x boost within 24h.
Timelocked upgradeable architecture with multisig + pause guardian.

Internal IDs first, NFT wrappers in v1.1 if needed.

14) Implementation Checklist

[] Solidity contracts + storage gap planning

[] Foundry unit tests
[] Fuzz/invariant suite

[] Deployment scripts (Sepolia + Mainnet)
[] Subgraph/indexer + API

[] Ops runbook (pause, recovery, incident protocol)
[] Security review + fixes

[] Public docs + risk disclosures

Prepared for Anti Hunter / Anti Fund product + engineering planning.

